Second-order negative-curvature methods for box-constrained and general constrained optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order negative-curvature methods for box-constrained and general constrained optimization

A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Conv...

متن کامل

On the Evaluation Complexity of Constrained Nonlinear Least-Squares and General Constrained Nonlinear Optimization Using Second-Order Methods

When solving the general smooth nonlinear optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy ǫ can be obtained by a second-order method using cubic regularization in at most O(ǫ) problem-functions evaluations, the same order bound as in the unconstrained case. This result is obtained by first showing that the same result ...

متن کامل

A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients

A practical algorithm for box-constrained optimization is introduced. The algorithm combines an active-set strategy with spectral projected gradient iterations. In the interior of each face a strategy that deals efficiently with negative curvature is employed. Global convergence results are given. Numerical results are presented.

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Second-order adjoints for solving PDE-constrained optimization problems

Inverse problems are of utmost importance in many fields of science and engineering. In the variational approach inverse problems are formulated as PDE-constrained optimization problems, where the optimal estimate of the uncertain parameters is the minimizer of a certain cost functional subject to the constraints posed by the model equations. The numerical solution of such optimization problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2009

ISSN: 0926-6003,1573-2894

DOI: 10.1007/s10589-009-9240-y